Implementation of digital holographic interferometry for pulsed plasma studies
Annotation
The study of low-temperature plasma generated in pulsed mode at atmospheric pressure was carried out. The purpose of the presented research is to develop a method of digital holographic interferometry for registration and evaluation of parameters of low-temperature plasma at atmospheric pressure in pulsed mode. This type of plasma is currently applied in medicine and biology. Thus, there is a need to control the exposure dose and plasma environment formation regimes. As plasma parameters, it can be considered its electron concentration which can be calculated through the estimation of the refractive index of plasma pulse in relation to unperturbed state. The plasma pulses were activated in Helium. The plasma pulse frequency was 5 kHz and its duration was 750 ns. During an investigation a laboratory set-up for recording holographic images of plasma pulses was developed. Holograms are acquired on a digital camera and a pulsed laser INNOLAS SpitLight Hybrid II at a wavelength of 532 nm with pulse duration of 10 ns is used as a source of coherent radiation. In order to record plasma pulses, the laser, plasma generator and digital camera were strictly synchronized to each other. During the experiment, a series of about 500 holograms were acquired, and the reconstruction of the phase of the object field was calculated. Analysis of the sequence of holograms allowed calculations of phase difference (interferograms) related to the refractive index of low-temperature pulsed plasma in Helium. It is known that low-temperature plasma leads to low phase delay which forms low phase contrast of the evaluated interferograms. For this purpose, we carried out preliminary experiments with plasma-arc that has similar temporary parameters, however, with a higher phase contrast of the interferograms. The paper presents experimental results obtained by studying the phase contrast of the refractive index of pure Helium, plasma-arc and plasma pulses in Helium. Thus, the effectiveness of both the experimental set-up and the method to evaluate the interferograms related to the refractive index of the plasma pulse was verified. The data obtained can then be used to estimate the electron concentration of the plasma. However, it needs to increase the sensitivity of the method in order to enhance phase contrast. Increase of sensitivity can be done by means of extension of the spectral range, for example, toward to infra-red.
Keywords
Постоянный URL
Articles in current issue
- Influence of the dimension, geometry, and orientation of nanostructures on the distribution of the electric field in matters of enhancing of Raman scattering
- Optical properties of planar plasmon active surfaces modified with gold nanostars
- Application of bioradiophotonics methods for the processing of bioelectric signals
- Automatic recognition of internal structures in translucent objects based on hologram-moire interferometry.
- Application of Neural Network and Computer Vision Technologies for Image Analysis of Skin Lesion
- Polychromic light source for the realization of multispectral processing method of skin malignant lesions images
- Application of additional high-frequency modulation to reduce influence of residual amplitude modulation LiNbO3 phase modulator on fiber optical gyroscope signal
- Optimization of the optical scheme of a photodetector module operating in the spectral range of 1.3–1.6 μm
- Residue feature analysis with empirical mode decomposition for mining spatial sequential patterns from serial remote sensing images.
- Adaptive nonlinear motion parameters estimation algorithm for digital twin of multi-link mechanism motion trajectory synthesis
- Investigation of spectral-luminescent properties of cesium CsPb(BrCl)3 quantum dots in fluorophosphate glasses
- Investigation of optical phenomena in multispectral matrix photodetector based on silicon
- The impact of yttrium aluminum garnet stoichiometry deviation on the conversion efficiency of tetravalent chromium ions
- Influence of low temperatures and thermal annealing on the optical properties of InGaPAs quantum dots
- Pressure control in material extrusion additive manufacturing
- An enforced non-negative matrix factorization based approach towards community detection in dynamic networks
- Visual display system of changes in physiological states for patients with chronic disorders and data transmission via optical wireless communication.
- Ice reconnaissance data processing under low quality source images
- Korsakov I.N., and othersPrediction of fatal outcome in patients with confirm COVID-19
- Generation of the weakest preconditions of programs with dynamic memory in symbolic execution
- On the possibility of expanding the studied dynamic ranges in thermal anemometry
- The beating effect in uniaxial oriented polymer materials
- Numerical method for calculating the nozzle thrust of a wide-range rocket engine
- Numerical simulation of propulsive aerodynamic profiles